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Abstract—In this paper we analyze the dynamic of an IMC
structure system. We prove the existence of a closed trajectory
(limit cycle) that is a solution of a differential system that
represent the ICM structure, to do this, we compute the first
Lyapunov Coefficient using the Kuznetsov Theorem obtaining a
Hopf bifurcation. Numerical simulation and experimental results
are included to give a full comprehension of the system. The
existence of a limit cycle obtained in the results suggests that
the implementation of advanced control laws are required. In
this paper we analyze the dynamic of an IMC structure system.
We prove the existence of a closed trajectory (limit cycle) that
is a solution of a differential system that represent the ICM
structure, to do this, we compute the first Lyapunov Coefficient
using the Kuznetsov Theorem obtaining a Hopf bifurcation.
Numerical simulation and experimental results are included to
give a full comprehension of the system. The existence of a limit
cycle obtained in the results suggests that the implementation of
advanced control laws are required.

Index Terms—Internal Model Control; Stability analysis;
Andronov-Hopf bifurcation; First Lyapunov coefficient.

I. INTRODUCTION

In the past years, several control techniques has been devel-
oped in order to solve the problem of variables manipulation
in processes. However, limitations like the non-linearity of the
system, poor modeling and the use of linear controllers have to
be solved before selecting the controlling technique. One of the
method that had increased in popularity is the Internal Model
Control (IMC) (see Ref.[1]). The reason of this is because the
lack of expensive elements for its implementation, its analogy to
the traditional PID controller and the simplicity of the system,
makes it a viable low-cost option for the budget of a non-lineal
controller. Despite of its benefits, the lack of robustness of this
structure makes it inadequate for certain processes and it is often
combined with other controllers to compensate its limitations.

According with some experimental results the main issue of
using only the IMC method is that after reaching the set point
it can turn very sensitive to perturbations and changes in the
reference value (see Ref.[2]). This would be seen in form of
maintained oscillations, but not necessarily in the output of the
process. The idea of the performing oscillations suggest that Hopf
Bifurcations are existing within the system.

The purpose of the following paper is to analyse the dynamics
and describe the stability of a non-linear system with an Internal

Model Control. The equation of the plant in this work is given,
but the importance of study lies in the structures of the IMC.

Hopf Bifurcation control has been vastly studied and applied in
different situations (See Ref.[3]). For example, in Power Systems
the Hopf Biffurcation Control Techniques are used to damp oscil-
lations related to instabilities (See Ref.[4]). Another application is
on Biological systems, where these techniques are used in parasite
control on crops (See Ref.[5]). An additional usage of these, exists
on mechanical systems, where they have been used to stabilize
maglev trains (See Ref.[7]). The idea of studying the stability in
the IMC structure consists in, understanding the dynamics of the
process, in order to evaluate its potential to use the Bifurcation
Control later on.

The outline of this paper is as follows. In section II is provided
the description of the system with the equations that models it.
The local stability and Hopf bifurcation analysis is computed
on section III. The qualitative analysis of the Hopf bifurcation
iis presented using the Kuznetsov theorem (See Ref.[9] pp. 177-
180). The section IV is devoted to the numerical simulations and
experimental results, including the detection of the limit cycle
with its phase portrait and his time series graphs. Finally, we
provide a conclusion of obtained results in the last section V.

II. SYSTEM MODELLING

The structure of an IMC can be seen in the figure 1. As it was
mentioned before, it became popular because of the analogy of
this structure and the classical closed loop. The reason of this is
that when the model is perfect, both methods are equivalent.

The traditional procedure to develop this arrangement consists
in the next steps:

• Find the transfer function of the model, usually a linear
one.

• Obtain the controller using the inverse transfer function of
the model.

• Design for a filter in order to make the controller to be pole
dominant i.e. proper.

So, following this steps and knowing that a the ecuation of
a first order transfer function of the following form c

τs+1
is

ẋ = − 1
τ
x+ c

τ
u the system can be written like:
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Fig. 1. IMC classic structure.

Ẋp = µXp −X3
p + CpU,

Ẋm = −KXm + CmU,

Ẋf = −afXf + af (Xp −Xm),

U =
KXm + afXf − af (Xp −Xm)− a(Xp)

Cm
(1)

Where Xp, Xm and Xf are the states of the process, the model
and the filter. The control law is represented by U . The constants
Cp and Cm are the input gain of the controller to the real process
and the model. The parameter µ is the intrinsecal parameter of
the process. K and af are the time constant of the model and
the filter. Finally Cm and a are the output and the input gain of
the controller.

III. LOCAL STABILITY AND HOPF BIFURCATION ANALYSIS

In order to analyze the system, some mathematical consider-
ations were applied. First, the equations were translated at the
origin. Using the following transformation.

ξ1 = Xp −Xm
ξ2 = Xf

ξ3 = Xm −Xf − y ∗
(2)

The advantages of this transformation is that a few of this
coordinates represent different elements of the structure that
can be measured. For example, ξ1 is the model error, i.e. the
inaccuracy of the model equation to describe the process and ξ2
is the output of the filter.

ξ̇1 = µ(ξ1 − ξ2 + ξ3)− (ξ1 − ξ2 + ξ3)
3 +

CpK

Cm
(−ξ2 + ξ3) +

+afξ2

(
Cp
Cm
− 1

)
+ afξ1

(
1− Cp

Cm

)
+ aξ3

(
1− Cp

Cm

)
ξ̇2 = −afξ2 + afξ1

ξ̇3 = −aξ3
(3)

For all the values of the parameters, the transformated system
has the only equilibrium at ξ = (0, 0, 0). With this result the the
jacobian evaluated at the origin has the form

af − Cpaf
Cm

+ µ
Cp(af−K)−Cm(af+µ)

Cm
µ+

Cp(K−a)+a
Cm

af −af 0
0 0 −a

 (4)

with the characteristic equation

λ3+

(
Cpaf
Cmx

− µ+ a

)
λ2+

(
Cpaf (K + a)− Cmaµ

Cm

)
λ+

CpafKa

Cm
= 0

(5)
To find the relationship between the parameters and the Hopf

Bifurcation critical frequency it was used the Routh-Hurwitz
criterion. Solving for µ, two options were obtained.

µ1 =
Cpaf
Cm

µ2 =
Cpaf (K + a) + Cma

2

Cma
(6)

If µ2 is subsituted in the characteristic equation, the obtained
factorization gives two positive roots that leads to exponential
growing, hence this solution is discarded.

On the other hand, µ1 gives the hopf bifurcation factoriazation,
in which critical frequency can be easily obtained, giving the
following value.

ω2 =
CpKaf
Cm

(7)

Now with the obtained result is possible to check the Liu
conditions(See Ref.[8]). First the coefficients of the caracteristic
polinomial evaluated on the critical value of the parameters must
be positive.

P0(µ1) = 1

P1(µ1) =
2Cpaf
Cm

+ a

P2(µ1) =
KCpaf
Cm

P3(µ1) =
KCpafa

Cm
(8)

Second, the derivative of the Hurwitz determinants, evaluated
on the critical value of the parameters must be non-zero.

dH2(µ1)

dµ
= −KCpaf + Cma

2

Cm
(9)

Lemma. For µ =
Cpaf
Cm

and ω2 = Kµ there is a set of
three parameters for which the linealization has a couple of pure
imaginary proper values and a non-zero real one.

Finally, acording to Kuznetsov theorem (See Ref.[9])the first
Lyapunov coefficient is.

L1(0) = −
3
√
Kµ

2(2a2f +Kµ)
(10)

From the results is concluded that, the Lyapunov coeficient is
clearly negative for all positive value of the parameters. Thus,
a Hopf bifuration exists and it is nondegenarate and always
supercritical.
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Fig. 2. Circuit Implementation.

IV. NUMERICAL SIMULATION AND EXPERIMENTAL
RESULTS

The system described by the equations (1) can be developed
with electronic circuits. The implemented circuit can be seen on
figure 2.

The structure of the circuit is such as every block is equivalent
to an equation. Having the state defined at the output of these.
The relationship between the component values and they labels
can be seen in the following table.

Value Label
2k Res 2, 4, 6, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 23,

24, 25, 26, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 41
90k Res 1, 3
10M Res 13, 22, 33
10K Pot 5, 7, 16, 27, 34, 40
0.1 µ Cap 1, 2, 3

TABLE I
COMPONENT TABLE

All the components above have a tolerance of 5%.The inte-
grated circuits used on the circuit were tl081 for operational
amplifiers and ad534 for the multiplier. The last one had an
error of 0.25%.

Before executing the experiment, a first numerical run was
made with µ = 2, Cp = 2, Cm = 1 K = 0.5, af = 1 and a = 4.
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Fig. 3. First Run: Time Response.

For this parameters values it was expected to obtain a
limit cicle of small amplitude. Instead, with the experiment the
obtained results were somewhat different.

There are many things to explain about figure 4. First of all,
the parameters used in the experiment are different from the

Fig. 4. Experiment: Time Response.

first run. Later, it was made a second run with the experimental
values. The tolerances of the components added a DC component
to the output. Also, it is suspected that the amplifiers added a
little distorsion to the signal. Despite of these limitations, the
qualitative characteristics were kept.

After this results, it was made a second run of the numerical
simulation with the experimental values. These were: µ = 0.2,
Cp = 0.33, Cm = 0.3 K = 0.7, af = 0.05 and a = 0.3. With
this values the following graphs were obtained.
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Fig. 5. Second Run: Time Response.

The importance of the discussion here is that the magnitude
of the response is indeed constant but, is bigger than expected.

Fig. 6. Experimental: Phase Portrait.
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Fig. 7. Second Run: Phase Portrait.

V. RESULTS

The system stability was successfully predicted by the model.
The description was accurate enough to understand the quali-
tative response of the system. Now the importance of study of
this is to know the set of parameters that generates this change
in stability. This analysis is usually relevant for design, because
oscillatory response can generate several damage to the systems
elements. Whereby, it is of interest to known the region where
this effect does not appear.

The damage generated by the oscillations depends of the
system where they are presented. For example in electrical
systems, this can lead to overdriving electronic components, just
like the experiment above, which can also provoke the breakage
or failure in the signal and power elements (See Ref[3]). Also, a
similar results can be seen on mechanical systems where the
vibrations generates fatigue of the components (See Ref[10]),
leading to the decrease in life of the linkages.

In control theory is often seen that a lack of robustness of the
controller is the reason for which oscillations are generated at
closed loop. The problem in the controller design is to know
the gains that gives a good tracking of the reference. As a
consequence, the election of the control technique is vital at the
moment of design. Now with the results it can be seen that the
implemented structure was not enough to ensure the robustness
of the systems. So other techniques should be implemented. This
is relevant because this means that the IMC structure is not
capable to manage a Hopf Bifurcation or even it can change the
dynamics of a system leading to this Bifurcation.

APPENDIX

In this section we provide the Routh-Hurwitz criterion for
polynomials of grade three, this with the purpose to show how
to determine the local stability of the equilibrium points in three-
dimensional systems. For example, if we have the next Jacobian
matrix evaluated at an equilibrium point P0

J (P0) =

 J11 J12 J13
J21 J22 J23
J31 J32 J33

 (11)

then the characteristic polynomial associated with this matrix is

P (λ) = A0λ
3 +A1λ

2 +A2λ+A3 (12)

where the coefficients are
A0 = 1,
A1 = −J11 − J22 − J33,
A2 = −J12J21 − J13J31 − J23J32 + J22J33 + J11 (J22 + J33) ,
A3 = J13 (J22J31 − J21J32) + J12 (J21J33 − J23J31) + J11 (J23J32 − J22J33) .

Under the previous assumptions, the Routh-Hurwitz criterion is
summarized in the following theorem

Theorem A.1. Given the polynomial

P (λ) = A0λ
3 +A1λ

2 +A2λ+A3

with associated Hurwitz matrix

H =

 A1 A3 0
A0 A2 0
0 A1 A3

 (13)

If it satisfy the following conditions

H1 > 0, H2 > 0 and H3 > 0,

where H1, H2 and H3 are the principal diagonal minors of (13),
then the matrix (13) is Hurwitz stable.

The theorem A.1 implies that, if the characteristic equation
of 11 is cubic, this is, P (λ) = A0λ

3 + A1λ
2 + A2λ + A3, then

A0 > 0, A1 > 0, A2 > 0, A3 > 0 and A1A2 −A0A3 > 0 are the
necessary and sufficient conditions that the roots of the equation
P (λ) = 0 are negative or have negative real parts. In the case
of polynomials of grade two is very simple, the conditions are:
A0 > 0, A1 > 0 and A2 > 0, where A0, A1 and A2 are the
coefficients of the terms of grade two, one and zero, respectively.
In general, a polynomial P (λ) = A0λ

n +A1λ
n−1 + · · ·+An of

grade n has a Hurwitz matrix

H =


A1 A3 A5 · · · 0
A0 A2 A4 · · · 0
0 A1 A3 · · · 0

...
...

...
. . . ...

0 0 0 · · · An

 (14)

For an applied treatment about the Routh-Hurwitz criterion see
for instance [? ].

Fig. 8. A three level trophic chain.
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